RSS | PDA | XML




Полезное




Магазин Дешево
Напольные покрытия. Ковры и напольные покрытия.
int-era.ru
Скачать ЛИРА 9.6
Торрент видеокурсы на любой вкус. Возможность скачать и обучаться дома
lira-soft.com
Philips монитор пациента
Ремонт телефонов Samsung, Nokia, Philips и др. Быстро, дешево, гарантия
forcemedika.ru

Физические свойства кристаллов гидроксиапатита (ГА)




Физические свойства кристаллов сложных веществ, к которым можно отнести гидроксиапатит (ГА), в отличии от более простых соединений типа металлов, графита, поваренной соли, носят характер гетеродесмических. Для них внутренние связи наряду с прочными ковалентными связями имеют другие, например, ионные, Ван-дер-ваальсовые, образующие фрагменты. Эти включения, состоящие, в частности, из SO42-, NO3-, СO32-, SiO42- и др., могут быть представлены в виде «островов», каркасов, цепочек, слоев. Свободная энергия, которая определяется по формуле:

W = U - ST,

где U - энергия связи кристалла, S - энтропия, Т - температура, имеет наиболее высокое значение, равное около 20-100 ккал/ моль для ковалентных, а 1 — 10 ккал/моль - Ван-дер-ваальсовых сил. Последним принадлежит ключевая роль в процессах адгезии биополимеров и белков (Бокий, 1971; Киттель, 1978; Прохоров и др., 1995).

Определение свободной энергии в настоящее время возможно преимущественно для простых случаев с использованием зонной теории, предложенной в 1928-1934 гг. Ф. Блохом и Я. Бриллюэном, согласно которой атомы в твердом теле (TiO2, MgO, Ti-Ni и т.п.) находятся на расстояниях порядка размера самих атомов. При этом валентные электроны могут распространяться по всему кристаллу, формируя замкнутые энергетические зоны. В зависимости от характера этой зоны, как было показано А. Вильсоном (1931) (частично заполненной, незаполненной, запрещенной, проводимости, неопределенно-валентной и др.) кристаллы проявляют свойства проводника, диэлектрика, полупроводника. В аморфных телах, по-видимому, есть квазизапрещенные энергетические области, являющиеся аналогами зонной структуры, что позволяет им проявлять свойства металлов, диэлектриков и полупроводников (Каганов, Френкель, 1981; Киттель, 1978; Пайерлс, 1956). Характеристики строения кристаллической решетки ГА и ОКФ представлены в таблицах.


Кристаллографические свойства ОКФ и ГА: сравнение рассчитанных d-интервалов для возможных h00 пиков в ОКФ и в ГА (Brown, 1962, Brown et al., 1981)


ОКФ

ГА

h00

dh00, A

h00

dh00, A

100

18,68

100

8,16

200

9,34

200

4,08

300

6,23

300

2,72

400

4,67

 

 

500

3,74

 

 

600

3,11

 

 

700

2,67

 

 


Характеристика строения кристаллов ОКФ и ГА


Размеры единичной ячейки ОКФ и ГА

ОКФ

ГА

а, А

19,705

9,432

b, А

9,529

9,432

с, А

6,855

6,881

α, °

90,13

90

β, °

92,19

90

γ, °

103,36

120

Пространственные группы

Триклинная

Гексагональная

Морфология

Ножевидная, игольчатая

Игольчатая


Из биодеградируемых кальциофосфатных материалов, полученных из порошков дикальциофосфата безводного и тетракальций фосфата, готовились стержни или диски с начальным соотношением Са/Р-1,5 и, после дополнительной обработки и прессования, образовывался низкокристаллический гидроксиапатит (ГА). Стержни имплантировались в бедренную кость крысам, и изучалось врастание костной ткани в течение 1-5 недель. Диски культивировались с костными клетками в системе in vitro. При этом происходила замена кальциофосфатного материала новой костью за счет процесса его ремоделирования. Сначала остеокласты и мультиядерные клетки резорбировали материал, а затем остеобласты восстанавливали новую кость в течение 3 недель. В образовавшиеся в материале конусы шириной 0,75 мм, выстланные костными клетками, врастали сосуды, а сама зона неоостеогенеза постепенно расширялась (Foster et al., 1998).

Макротекстурированные поверхности гидроксиапатита обладают более выраженной способностью к интеграции с костной тканью по сравнению с обычными гладкими материалами (Ricci et al., 1998).

Апатит зубов содержит большее количество карбоната и фтора, Mg2+, Na+. При этом происходящее замещение ОН на F увеличивает твердость и сопротивляемость к разрушению материала, однако снижает остеоиндуктивные и остеокондуктивные свойства ткани.

Ионы кальция и магния принимают участие в процессах клеточной адгезии (Гольдберг и др., 1992). Вполне логично предположить, что если в кальциофосфатную (КФ) керамику ввести ионы магния, то это может усилить способность поверхности материала прикреплять к себе остеогенные клетки и, тем самым, способствовать процессу связывания костной ткани. Это было подтверждено в опытах на кроликах, которым в бедро имплантировали стержни из TiAlV сплава, покрытые ГА керамикой, нанесенной плазменным напылением. В материал дополнительно с помощью ионной имплантации вносились ионы магния в дозе 1х107 см2. Оказалось, что через 3 недели, но не ранее, в опытной группе интеграция костной ткани с имплантатом достоверно превышала контрольные значения, что было доказано на ультратонких срезах с использованием флуоресцентных меток (тетрациклин, кальцеин синий, кальцеин зеленый, ализарин красный). Предполагается, что данный эффект обусловлен влиянием магния не только на адгезию костных клеток, но и на функциональную активность остеобластов (Zhang et al., 1998).

Рост костей включает начальное образование аморфного апатитного слоя, который в присутствии воды может частично гидролизироваться с образованием кристаллической структуры гидроксиапатита. Образования, возникающие при этом, очевидно, имеют сложную структуру и симметрию. В реальных условиях все кристаллы разбиты на мозаичные блоки, в которых структуры дезориентированы по отношению друг к другу на малые углы. В костной ткани кристаллы гидроксиапатита ориентированы вдоль коллагеновых волокон. Следует обратить внимание на то, что последние имеют сложную структуру с расположением коллагена по силовым линиям напряжения. Следовательно, процесс кристаллизации гидроксиапатита должен учитывать эту особенность за счет, например, деформации кристаллов в поликристаллической цепи, позволяющей повторять пространственную структуру волокон. Это подразумевает то, что для выполнения биомеханической роли кристаллов гидроксиапатита в костной ткани их форма, размеры и симметрия должны варьироваться. Иначе нарушится структурная и функциональная целостность кости как опорно-двигательного органа.

Из этого вытекает важный практический вывод: при разработке новых биоматериалов на основе гидроксиапатита следует использовать анизотропные кристаллы с изменяющейся формой.

Резюмируя вышесказанное, можно с большой степенью вероятности утверждать, что натуральный гидроксиапатит имеет строго специфическую пространственную организацию, анизотропию, которую чрезвычайно трудно воссоздать в искусственных усло виях. Нарушение структуры КФ, вызванное микроэлементами, анионами или катионами приводит к изменению физико-химических и биологических свойств гидроксиапатитных  материалов, что является, очевидно, одной из причин, вызывающих различного рода осложнения при их использовании в травматологии и ортопедии. К сожалению, как мы уже говорили, пока ни одна из известных схем синтеза гидроксиапаптита не позволяет точно повторить особенности кристаллической структуры его естественного изомера. Уровень современной техники еще далек от того, чтобы в искусственных условиях воссоздать направленный рост кристаллов гидроксиапатита, даже из нативных зародышевых матриц. В первую очередь это происходит из-за нарушения равновесных условиях роста кристалла и захвата им технологических примесей, а также способов нанесения ГА покрытий на имплантаты. Следствием вышеуказанных процессов является возникновение точечных дефектов, дислокации и секторированию кристаллической структуры гидроксиапатита, со всеми вытекающими из этого последствиями.


А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики




Комментировать:
Имя:

Сообщение:


Похожие статьи:

Экспериментальная оценка остеоиндуктивности рекомбинантного костного морфогенетического белка

Категории: Клеточные технологии, Тканевая инженерия,
Вестник травматологии и ортопедии им. Н.Н. Приорова №4 2010 Миронов С.П., Гинцбург А.Л., Еськин Н.А., Лунин В.Г., Гаврюшенко Н.С., Карягина А.С., Зайцев В.В. Экспериментальная оценка остеоиндуктивности..

Лечение повреждений лицевого черепа при помощи биотехнологий

Категории: Другое, Тканевая инженерия,
The culture of allofibroblastes has been applied in treatment of patients with defects of a nasal septum and clinic of an atrophic rhinitis. For cultivation the author's diploid cellular culture, gained..

Влияние культивированных фетальных фибробластов на минерализацию костного регенерата

Категории: Регенерация и остеогенез, Тканевая инженерия,
Влияние культивированных фетальных фибробластов на минерализацию костного регенерата, формирующегося в условиях чрескостного дистракционного остеосинтеза Results of indirect computer densitomery of X-ray..

Клиническое применение тканевой и клеточной трансплантации

Категории: Клеточные технологии, Тканевая инженерия,
В середине девяностых годов прошлого столетия мы проводили катамнестическое обследование более чем 100 больных детей, страдавших некурабельными формами эпилепсии и лечившихся методом тканевой..

Костно-пластические коррекции эквино-плано-вальгусной деформации стопы у подростков

Категории: Другое, Тканевая инженерия,
Seventy one patients with painful equinoplanovalgus foot deformity associated with infantile cerebral palsy were surgically treated in Pediatric Clinic of the Novosibirsk NIITO from 2007 to 2009...