RSS | PDA | XML




Объявления




Методика микродугового оксидирования титана и его сплавов



Основой методики является возбуждение на поверхности образца, погруженного в соответствующий электролит и являющегося анодом, и ванной, являющейся катодом, микродугового разряда, который создается путем подачи на образец импульса напряжения специальной формы.

Многочисленные локальные разряды приводят к возникновению на поверхности титана или сплава на его основе оксидного слоя, скорость роста которого быстро убывает со временем. Критическим параметром, определяющим ход оксидирования, является плотность тока. Ниже определенного для каждого электролита значения плотности тока наращивание оксидного слоя не происходит. В настоящей работе в качестве электролитов для оксидирования использовались следующие растворы:

  1. Электролит №1: 2,5% раствор фосфорной кислоты в воде.
  2. Электролит №2: 5% раствор щавелевой кислоты в воде.
  3. Электролит №3: 5% раствор КОН в воде.

В процессе окисления электролит разогревается, поэтому ванна из нержавеющей стали погружалась в кювету с проточной холодной водой. Частота следования импульсов 100 Гц, длительность импульса 100 мс. Время оксидирования 2-20 мин в зависимости от материала образца.

Было замечено, что увеличение времени оксидирования свыше 30 мин не меняет толщины оксидного слоя. В процессе роста оксидного слоя плотность тока снижается, а амплитуда напряжения импульса растет от 70-80 до 300 В.


Режимы микродугового оксидирования сплавов ВТ1-0, ВТ5-1 и ВТ16 в разных электролитах


Электролит

Н3РO4 (2,5%)

Щавелевая кислота (5%)

КОН (5%)

Сплав

ВТ1-0

ВТ5-1

ВТ16

ВТ1-0

ВТ5-1

ВТ16

ВТ1-0

ВТ5-1

ВТ16

Время

импульса, мкс

100

100

100

100

100

100

100

100

100

Частота, Гц

100

100

100

100

100

100

100

100

100

Время МДО, мин

1,5

1,5

1,5

20

20

20

12

6

6

Начальная плотность тока, А/мм2

0,22

0,25

0,6

0,22

0,25

0,6

0,22

0,25

0,6

Конечное напряжение, В

300

300

300

300

300

300

200

240

160


Конкретные режимы микродугового оксидирования, оптимальные для данного электролита и материала, выбраны на основе отработки режима при вариации времени оксидирования. Режимы для различных электролитов приведены в таблице, из которой следует, что максимальная скорость оксидирования для всех исследованных материалов достигается в электролите №1 (Н3РO4).

Увеличение времени оксидирования свыше 1,5 мин практически не влияет на толщину оксидного слоя. В щавелевой кислоте та же толщина оксидного слоя достигается за время 20 мин. Электролит №3 (КОН) дает средний показатель скорости оксидирования 6-12 мин.


А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики




Подберём Вам бесплатно нужного врача-специалиста






Комментировать:
Имя:

Сообщение:


Похожие статьи:

Стадия регенерации и репарации

Категории: Травматология и ортопедия, Биомеханика и биосовместимость,
Под регенерацией подразумевают восстановление тканью, органом утраченной или поврежденной специализированной структуры. Физиологическая регенерация заключается в обновлении морфофункциональных свойств..

Биодеградация и коррозия биоматериалов

Категории: Травматология и ортопедия, Биомеханика и биосовместимость,
Биодеградация свойств биоматериала в конечном счете приводит к снижению его биомеханических характеристик. Разрушение полимерных материалов и гидроксиапатита (ГА) происходит за счет растворения,..

Остеоинтеграция биоматериалов

Категории: Травматология и ортопедия, Биомеханика и биосовместимость,
Процесс остеоинтеграции биоматериала с костной тканью может осуществляться через прямые или опосредованные механизмы. В первую группу факторов следует отнести специфические ростовые гормоны, оказывающие..

Фиброз

Категории: Травматология и ортопедия, Биомеханика и биосовместимость,
Исходом острого и хронического воспаления может быть фиброз. Образование стромальной капсулы, как правило, происходит вокруг имплантатов, начиная со 2-3 месяца после их введения. Это защитная реакция..

Кальцификация биоматериалов

Категории: Травматология и ортопедия, Биомеханика и биосовместимость,
Для ортопедических биоматериалов, в отличие от используемых в других отраслях имплантологии, процесс кальцификации является в большинстве случаев положительным моментом, улучшающим интеграцию с костной..

Современные принципы ампутаций и реконструкции культей конечностей

Категории: Травматология и ортопедия, Разное,
Ампутация как следствие тяжелых травматических повреждений или заболеваний конечностей в значительной степени нарушает опорно-двигательную функцию человека. В реабилитации больных с культями конечностей..

Реплантация конечности

Категории: Травматология и ортопедия, Разное,
Реплантация конечности — это операция по анатомическому восстановлению прерванных структур и конечности в целом при полном или неполном отчленении какого-либо ее сегмента. Выделяют два основных фактора,..

Принципы реплантации сегментов конечности

Категории: Травматология и ортопедия, Разное,
Классификация травматических отчленений конечностей имеет не только академическое, но и важное практическое значение для решения различных тактических задач при лечении пострадавших. Травматические..

Медицинская помощь при ранениях кровеносных сосудов

Категории: Травматология и ортопедия, Разное,
Мероприятия при ранении кровеносных сосудов следует разделять на неотложные, срочные и окончательные. Первые в виде остановки кровотечения путем накладывания жгута, давящей повязки, прижатия сосуда,..

Повреждения магистральных кровеносных сосудов

Категории: Травматология и ортопедия, Разное,
Повреждения кровеносных сосудов относятся к категории наиболее драматических по интенсивности и быстроте развивающихся последствий. Пожалуй, нет другой травмы, где была бы так необходима неотложная помощь..