RSS | PDA | XML

Реклама




Динамика лучезапястного сустава


Полулунная колонна

В первом приближении было бы удобно рассматривать лучезапястный сустав как единую неменяющуюся структуру, но недавние исследования в области функциональной анатомии показали, что такое статичное представление неверно. Лучше представлять себе геометрически вариабельное запястье, меняющее форму под влиянием движений его костей по отношению друг к другу и ограничений со стороны связок.

Эти простые движения были изучены Кульманом в средней колонне, представленной полулунной и головчатой костями, и в наружной колонне, образуемой ладьевидной костью, трапецией и трапециевидной костью.

Полулунная колонна



Динамика средней колонны определяется асимметричной формой полулунной кости, которая массивней и толще спереди, чем сзади. Так, на головке головчатой кости может сидеть «фригийский колпак» (рис. 41), «казачья шапка» (рис. 42) или «тюрбан» (рис. 43) и редко - «шапка» с двумя симметричными концами (рис. 44). В последнем случае головка головчатой кости будет асимметричной с более выраженным скосом кпереди. Примерно в 50% случаев именно «фригийский колпак» лежит между головчатой костью и дистальной поверхностью лучевой кости в виде клина. Таким образом, эффективное расстояние между головчатой костью и дистальной суставной поверхностью лучезапястного сустава варьирует в зависимости от степени сгибания или разгибания в нем. В нейтральном положении (рис. 45) это расстояние соответствует средней толщине полулунной кости.

При разгибании (рис. 46) это расстояние меньше, поскольку соответствует наименьшей толщине полулунной кости.

При сгибании (рис. 47) это расстояние увеличивается, так как соответствует полной толщине самой массивной части полулунной кости. Однако скошенность дистальной суставной поверхности лучезапястного сустава также влияет на это эффективное расстояние. Так, в нейтральном положении расстояние между центром головки головчатой кости и дистальной суставной поверхностью лучезапястного сустава максимально при измерении по длинной оси лучевой кости. При разгибании (рис. 46) перемещение головки головчатой кости в проксимальном направлении частично нивелируется опусканием заднего края дистальной суставной поверхности лучезапястного сустава в дистальном направлении. При сгибании (рис. 47) «опускание» головки головчатой кости книзу частично нивелируется «подниманием» переднего края дистальной суставной поверхности лучезапястного сустава кверху. Таким образом, центр головки головчатой кости, по существу, смещен в проксимальном направлении на расстояние h от места его нахождения при нейтральном положении (рис. 45) лучезапястного сустава. С другой стороны, во время сгибания (рис. 47) этот центр смещается кпереди на расстояние а, равное или даже вдвое превышающее смещение кзади r, наблюдаемое при разгибании (рис. 46). Это неизбежно сказывается на напряжении и моментах сил, развиваемых мышцами-сгибателями и разгибателями лучезапястного сустава.

В целом флексия больше в лучезапястном (50°), чем в среднезапястном суставе (35°), и наоборот, экстензия больше в среднезапястном (50°), чем в лучезапястном суставе (35°). Это, безусловно, справедливо для крайних пределов амплитуды, но при движениях в меньшем объеме величина сгибания и разгибания почти одинакова в обоих суставах. Из-за ее асимметрии полулунная кость существенно влияет на архитектуру запястья в покое. При нейтральном положении (рис. 48) полулунная кость надежно удерживается передней и задней лучеполулунными связками. Если же она наклонена кпереди (рис. 49) или кзади (рис. 50), то центр головки головчатой кости соответственно смещается проксимально е и кзади с или кпереди b. Поэтому первичная нестабильность полулунной кости, вызванная разрывом или растяжением передней (рис. 42) или задней (рис. 43) лучеполулунной связки, сказывается опосредованно на головчатой кости и на всем лучезапястном суставе.

Стабильность положения полулунной кости зависит от ее связей с ладьевидной и трехгранной костями. Если она отрывается от ладьевидной кости, то наклоняется кпереди (рис. 51) из-за разгибания лучезапястного сустава. В Америке это называют DISI - Dorsal Intercalated Segment Instability. Если полулунная кость теряет связь с трехгранной, то наклоняется кзади (рис. 52) из-за сгибания лучезапястного сустава (VISI - Volar Intercalated Segment Instability). Эти термины очень важны для объяснения патологии запястья.


Ладьевидная колонна

Форма и пространственная ориентация ладьевидной кости определяют динамику наружной колонны запястья. Ладьевидная кость (рис. 53, вид сбоку) имеет почкообразную форму с закругленным верхним концом или, говоря иначе, выпуклой проксимальной поверхностью, находящейся в контакте с дистальной суставной поверхностью лучевой кости, и с дистальным концом, образующим бугорок и сочленяющимся с трапециевидной костью (на рис. не показано) и костью-трапецией. Ладьевидная кость лежит отчетливо кпереди от трапециевидной и головчатой костей и тем самым ответственна за то, что большой палец и первая пястная кость находятся кпереди от плоскости ладони. Таким образом, ладьевидная кость зажата в наклонном положении между лучевой костью и трапецией, причем величина наклона зависит от ее формы. Итак, ладьевидная кость может быть почкообразной, «лежащей» (рис. 53), согнутой и «сидящей» (рис. 54) или почти прямой и «вертикальной» (рис. 55). «Лежащая» ладьевидная кость встречается наиболее часто, что будет показано на схемах.

Ладьевидная колонна


Из-за ее вытянутой формы ладьевидная кость имеет длинный диаметр и короткий диаметр (рис. 56), которые вариабельно связаны с дистальной поверхностью лучевой кости и проксимальной поверхностью трапеции. Это ведет к вариациям в эффективном расстоянии между лучевой костью и трапецией.

В нейтральном положении (рис. 57) это расстояние максимально. Ладьевидная кость находится в контакте с лучевой в точках а и а′ и с трапецией - в точках b и g посередине проксимальной поверхности трапеции.

В положении разгибания (рис. 58) это расстояние уменьшается, так как ладьевидная кость оказывается между лучевой костью и трапецией. Контакт ладьевидной кости с лучевой происходит в точках с′ и с, а с трапецией - в точках d и g. В положении сгибания (рис. 59) расстояние также уменьшается, поскольку ладьевидная кость «ложится», а трапеция скользит кпереди. Теперь контактными точками становятся точки е и е′, f, g. Целесообразно отметить следующее.
  1. Точки контакта перемещаются по дистальной поверхности лучевой и ладьевидной костей (рис. 60):
    • на лучевой кости точка контакта при разгибании с' лежит кпереди от точки контакта а′ в нейтральном положении, и обе они находятся кпереди от точки контакта е′ при сгибании;
    • на проксимальной поверхности ладьевидной кости точка контакта е в положении сгибания лежит кпереди, точка контакта с в положении разгибания лежит кзади, и точка контакта а в нейтральном положении находится между ними;
    • на дистальной поверхности ладьевидной кости отмечается такое же расположение контактных точек (f спереди, d сзади и b в промежуточном положении).
  2. Эффективные диаметры ладьевидной кости ab, cd и ef, соответствующие нейтральному положению, разгибанию и сгибанию, почти параллельны и практически равны:
    • cd и ef параллельны,
    • ab и ef равны, cd немного короче.
  3. Смещение кости-трапеции относительно лучевой кости (рис. 61). При сгибании F и разгибании Е из нейтрального положения R трапеция перемещается по дуге круга концентрического с дугой, описываемой дистальной поверхностью лучевой кости, и также ротируется вокруг своей оси на угол, почти равный углу смещения, поэтому ее проксимальная поверхность всегда ориентирована к центру круга С.

До сих пор мы рассматривали сочетанные движения ладьевидной кости и трапеции. Позже мы опишем изолированные движения ладьевидной кости.


Движения ладьевидной кости

Расположенная в пазухе наружной колонны ладьевидная кость подвергается сдавлению между трапецией и трапециевидной костями, с одной стороны, и суставной поверхностью лучевой кости, с другой стороны, так что она уходит под лучевую кость.

Первый фактор стабильности (рис. 62) - соединение с трапецией посредством трапецо-ладьевидной связки, которая имеет большое значение; прикрепление к трапециевидной кости ладьевидно-трапециевидной связкой и к головчатой кости ладьевидно-головчатой связкой.

Движения ладьевидной кости


Второй фактор стабильности (рис. 63) - мощная лучеголовчатая связка, которая идет от переднего края шиловидного отростка лучевой кости к центру расхождения связок на передней поверхности головчатой кости. При натяжении эта связка приводит нижний полюс ладьевидной кости кзади (показано стрелкой). При сгибании ладьевидная кость стремится уйти под лучевую кость, лучеголовчатая связка препятствует этому наклону (рис. 64, вид спереди). Третий фактор - сухожилие длинной ладонной мышцы (рис. 65), которое скользит кпереди от ладьевидной кости в фиброзный футляр, чтобы зафиксироваться на передней поверхности основания второй пястной кости. На рис. 66 показан вид сбоку, когда ладьевидная кость отодвигается кзади (красная стрелка), благодаря сокращению сухожилия длинной ладонной мышцы (зеленая стрелка).

Когда ладьевидная кость принимает положение сгибания (рис. 67) под действием двух пястных костей (красная стрелка), ее нижний полюс скользит по суставной поверхности трапеции и трапециевидной кости (красная изогнутая стрелка). Это движение контролируется натяжением трапецо-ладьевидной связки, трапециевидно-ладьевидной и лучеголовчатой (просвечивают сквозь кость на рисунке). Одновременно ее проксимальный конец поворачивается под суставной поверхностью лучевой кости и упирается в задний край сустава. К тому же сокращение длинной ладонной мышцы смещает ладьевидную кость кзади.

Когда две первые пястные кости действуют в обратном направлении (рис. 68, красная стрелка), то ладьевидная кость встает на место благодаря сокращению длинной ладонной мышцы; так, основание ладьевидной кости скользит кзади по трапеции и трапециевидной кости, а ее проксимальный конец вновь возвращается в обычное положение в полости лучезапястного сустава.


"Верхняя конечность. Физиология суставов"
А.И. Капанджи





Комментировать:
Имя:

Сообщение:


Похожие статьи:

Функция мышц лучезапястного сустава

Категории: Физиология суставов, Лучезапястный сустав,
Классически основные мышцы лучезапястного сустава распределяются на четыре группы, и на рис. 138 (поперечный срез) схематически показано, как они связаны с двумя осями лучезапястного сустава: осью..

Двигательные мышцы лучезапястного сустава

Категории: Физиология суставов, Лучезапястный сустав,
На рис. 134 (лучезапястный сустав, вид спереди) можно видеть следующие мышцы: лучевой сгибатель запястья 1, лежащий в своей борозде глубже удерживателя сгибателей и имеющий главное прикрепление к..

Травматические повреждения запястья

Категории: Физиология суставов, Лучезапястный сустав,
На рис. 123 показан срез при сканировании, который прошел на уровне головки головчатой кости, сдвинутой наружу ладьевидной костью кнутри проксимальным краем крючковатой кости, на которую давит трехгранная..

Передача движения пронации и супинации

Категории: Физиология суставов, Лучезапястный сустав,
Запястье можно представить в виде кардана Представлять запястье как сустав, осуществляющий только сгибание-разгибание и отведение- приведение, является большой ошибкой, которая умаляет его значение в..

Геометрически вариабельное запястье (отведение и приведение)

Категории: Физиология суставов, Лучезапястный сустав,
Запястье лучше рассматривать, как мешок с камешками (рис. 80), а не как единую структуру, особенно при отведении и приведении, когда его форма меняется вследствие взаимодействия между костями и натяжения,..

Чувствительные зоны нижней конечности

Категории: Физиология суставов, Биомеханика ходьбы,
Эти зоны формируют полосы неправильной формы, растянутые вдоль всей нижней конечности, хорошо видимые на рис. 1 (вид спереди) и на рис. 2 (вид сзади). Латеральный кожный нерв бедра - ветвь бедренного..

Нервы нижней конечности

Категории: Физиология суставов, Биомеханика ходьбы,
В данной таблице детально представлены разветвления нервов нижней конечности, выходящих из поясничного и крестцового сплетений. Каждый нерв имеет свое название в международной номенклатуре. Существуют..

Ходьба... Это свобода!

Категории: Физиология суставов, Биомеханика ходьбы,
Ходить - значит обладать первой из свобод! Это дает нам автономность, возможность скрыться от опасности, найти пищу и кров, работать, ходить в горы, пройти весь мир, идти на встречу с неизвестным... Эта..

Мышечные цепи и бег

Категории: Физиология суставов, Биомеханика ходьбы,
Не стоит думать, что все упомянутые мышцы бессвязно работают «каждая для себя». В действительности они подчиняются очень четким двигательным схемам, зависящим от головного мозга, но главным образом - от..

Мышцы, участвующие в ходьбе

Категории: Физиология суставов, Биомеханика ходьбы,
Все мышцы нижних конечностей важны для осуществления ходьбы. Это означает, что малейшая недостаточность одной из этих мышц может привести к нарушению походки, более или менее серьезному. Девять рисунков,..